UCSD/CSE151_Intro.to AI: A statistical Approa

Lec_1 Intro

by Minwoo 2018. 4. 3.

목차

    @What is Machine Learning?


    -How to use data to learn to make better predictions


    1. Recommendation Systems  : suggest to something ( recommended movies..)


    2. Spam Detection : by using some words or sentences, we can throw the spam mails.


    3. Link Prediction : Like a "Linked In" from one person's neighbors,, Linked person...


    -Algorithm behavior changes based on data


    *This class: some basic machine learning methods



    @Two types of Machine Learning


    1. Supervised Learning: Given examples of data and their labels, predict labels of new(unseen) data


    2. Unsupervised Learning: Given data, build a model or cluster


    *There are other types, but we won't get to it in this class



    1. Supervised Learning


    Classification:

    Given labeled data:    (x_i  , y_i)  ... i=1, ...,n    ( here      x:  feature vector 

              y:  label                      )



    *where y is discrete, find a rule to predict y values for unseen x



    ( Set of input examples (x_i , y_i)  ->  ( classification Algorithm) -> ( Prediction Rule)  ;  on last step,,  (New example x  ->  Label y) <-> (Test Data)


    ^

    l-----  Training Data


    *Training and test data must be separate!!!


    *Performance Measure:

    Accuracy (or fraction of correct answers) on test data



    Summary:  

    1. Classification: Given labeled data (x_i , y_i)  where y is discrete, predict y values for unseen x


    Example 1 : Predict if a new patient has flu or not, based on existing patient data  ,,  What is x and y?


    ->  Features: Properties of patient     ,,     Label:   Flu   //  No Flu


    Example 2 : Which digit in the image?   


    ->   Label: 0,1,2, ... ,9      ,, What are the features?  ;  Option:  vector of pixel colors ----- pixel and black color filled with that pixel.


    A multi class classification problem


    *choosing features is non-trivial in real applications.


    2. Regression :  when 

    x : independent variable             ,,         y : dependent variable           

    where y is continuous   , design a rule to predict y values for unseen x






    2. Unsupervised Learning


    2-1. Clustering


    given a set of input objects, group them to clusters by similarity


    Example 1 : Cluster videos by people in them


    Example 2 : Custer documents by topic     ex)    physics:   gravity, laws of motion, electricity      ,,   Math:  geometry, Algebra

    *Features: Words in the document


    2-2. Dimensionality Reduction 

    Given high dimensional data, find a good low dimensional representation.


    Example 1: Images,,     # of pixels = 768,,  So 768-dimensional object 

    Can we find a lower dimensional representation?




    Total summary;   


    1. Supervised Learning : Given examples of data and their labels, predict labels of new ( unseen ) data

    Examples: Classification, Regression


    2.Unsupervised Learning: Given data, build a model

    Examples: Clustering, Dimension Reduction, learning HMMs



    * This class we will mostly cover discriminative models 


    https://ucsd.tistory.com/35   (Generative VS Discriminative Models)






    댓글